VIDYASAGAR UNIVERSITY
Midnapore, West Bengal

PROPOSED CURRICULUM&SYLLABUS (DRAFT) OF

BACHELOR OF SCIENCE (HONOURS)
MAJOR IN COMPUTER SCIENCE

4-YEAR UNDERGRADUATE PROGRAMME
(w.e.f. Academic Year 2023-2024)

Based on

Curriculum & Credit Framework for Undergraduate Programmes
(CCFUP), 2023& NEP, 2020

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 29 Jéar 2026 2246889 Pt; Qupynigitt () : : WieesagarUhnezssity
http://downiload! vidissagaraadni@ppablnklasspRRINKNKIDEER2 7

http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=163

VIDYASAGAR UNIVERSITY

BACHELOR OF SCIENCE (HONOURS) MAJOR IN COMPUTER SCIENCE

(under CCFUP, 2023)

Level YR. SEM Course Course Code Course Title Credit | L-T-P Marks
Type CA | ESE | TOTAL
SEMESTER-III
Major-3 COSHMJO03 | T: Data Structure; P: Practical 4 3-0-1 15 60 75
Major-4 COSHMJ04 | T: Computer Architecture; P: Practical 4 3-0-1 15 60 75
i SEC COSSEC03 | P: PYTHON 3 0-0-3 10 40 50
AEC AECO03 Communicative English -2 (common for all programmes) 2 2-0-0 10 40 50
MDC MDCO03 Multidisciplinary Course -3 (to be chosen from the list) 3 3-0-0 10 40 50
Minor-3 COSMINO3 | T: Digital Logic P: Practical 4 3-0-1 15 60 75
(Disc.-1)
Semester-111 Total 20 375
B.Sc. y SEMESTER-IV
(Hons.) 2 Major-5 COSHMJ05 | T: OOPs using C++; P: Practical 4 3-0-1 15 60 75
Major-6 COSHMJO06 | T: Operating System; P: Practical 4 3-0-1 15 60 75
Major-7 COSHMJO07 | T: Computer Network; P: Practical 4 3-0-1 15 60 75
v AEC AEC04 MIL-2 (common for all programmes) 2 2-0-0 10 40 50
Minor-4 COSMNI04 T: Data Structure; 4 3-0-1 15 60 75
(Disc.-11) P: Practical
Summer INT Internship/ Apprenticeship 4 0-0-4 - - 50
Intern.
Semester-1V Total 22 400
TOTAL of YEAR-2 42 775

MJ = Major, MI = Minor Course, SEC = Skill Enhancement Course, AEC = Ability Enhancement Course, MDC = Multidisciplinary Course, CA=
Continuous Assessment, ESE= End Semester Examination, T = Theory, P= Practical, L-T-P = Lecture-Tutorial-Practical, MIL = Modern Indian
Language

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University

http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

MAJOR (MJ)

MJ-3: Data Structure Credits 04(Full Marks: 75)

OBJECTIVE OF THE COURSE
e Introduce fundamental concepts and importance of data structures in computing.
Teach implementation of linear data structures such as arrays, linked lists, stacks, and queues.
Explore non-linear data structures including trees, graphs, and heaps.
Emphasize analyzing algorithm efficiency in terms of time and space complexity.
Develop skills in designing and implementing efficient algorithms.
Demonstrate real-world applications of data structures in software development for context and
relevance.
Provide hands-on programming experience with languages like C or Python.
o Enhance analytical and problem-solving skills through practical assignments.
o Prepare students for advanced topics in computer science and software engineering by building a
strong foundation in complex data structures.

OUTCOME OF THE COURSE

By the end of the course, students will be able to:

« Describe the role of data structures in organizing and managing data efficiently.

« Identify the appropriate data structure for a given problem.

+ Write programs to implement and manipulate arrays, linked lists, stacks, and queues.

« Implement and use trees (e.g., binary trees, AVL trees), graphs, and heaps.

« Design and implement algorithms for sorting (e.g., quicksort, mergesort), searching (e.g.,
binary search), and traversal (e.g., BFS, DFS).

« Apply these algorithms to real-world scenarios.

« Write, debug, and optimize programs in C or Python using data structures and algorithms.

« Use debugging tools and techniques to identify and fix errors.

+ Break down complex problems into smaller components and solve them using appropriate
data structures and algorithms.

- Demonstrate strong analytical and problem-solving skills.

MJ-3T: Data Structure Credits 03
Course contents:

Module- 1 Arrays 05 Hrs.
Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked Representation)

Module- 11 Stacks 05 Hrs.
Implementing single / multiple stack/s in an Array; Prefix, Infix and Postfix expressions, Utility and
conversion of these expressions from one to another; Applications of stack; Limitations of Array
representation of stack

Module- 111 Linked Lists 10 Hrs.
Singly, Doubly and Circular Lists (Array and Linked representation); Normal and Circular representation
of Stack in Lists; Self Organizing Lists; Skip Lists

Module- IV Queues 05 Hrs.
Array and Linked representation of Queue, De-queue, Priority Queues

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Module- V Recursion 05 Hrs.
Developing Recursive Definition of Simple Problems and their implementation; Advantages and
Limitations of Recursion; Understanding what goes behind Recursion (Internal Stack Implementation)

Module- VI Trees 20 Hrs.
Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion , Recursive and lterative
Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion, Traversals); Height-
Balanced Trees (Various operations on AVL Trees). Tree traversal techniques.

Module- VIl Searching and Sorting 05 Hrs.

Linear Search, Binary Search, Comparison of Linear and Binary Search, Selection Sort, Insertion Sort,
Bubble Sort, Quick Sort, Comparison of Sorting Techniques

Module- VIIT Hashing 05 Hrs.
Introduction to Hashing, Efficiency of Rehash Methods, Resolving collision by Open Addressing,
Coalesced Hashing, Separate Chaining, Dynamic and Extendible Hashing.

MJ-3P: Data Structures Lab Credits 01

List of Assignments:

1. Searchingina List

Write a program to search for an element in a list. Provide the user with the option to perform either Linear

Search or Binary Search. Use template functions to make the program generic.
2. Sorting a List

Write a program using templates to sort a list of elements. Allow the user to choose between Insertion

Sort, Bubble Sort, or Selection Sort for sorting.
3. Linked List Implementation: Implement a Linked List using templates. Include functions for:
Insertion
Deletion
Searching for a number
+ Reversing the list
« Concatenating two linked lists (implement both a function and an overloaded + operator).
4. Doubly Linked List Implementation: Implement a Doubly Linked List using templates. Include
functions for:
+ Insertion
+ Deletion
« Searching for a number
» Reversing the list.
5. Circular Linked List Implementation: Implement a Circular Linked List using templates. Include
functions for:
« Insertion
+ Deletion
« Searching for a number
+ Reversing the list.
6. Stack Operations Using Linked List
Implement Stack operations (push, pop, peek, etc.) using a Linked List implementation.
7. Stack Operations Using Array

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Implement Stack operations (push, pop, peek, etc.) using an Array implementation. Use templates to
make the stack generic.
Queue Operations Using Circular Array
Implement Queue operations (enqueue, dequeue, etc.) using a Circular Array implementation.
Use templates to make the queue generic.
Double-Ended Queue (Deque) Operations
Create and perform operations on a Double-Ended Queue (Deque) using a Linked List implementation.
Polynomial Operations Using Linked List
Write a program to represent a polynomial using a Linked List and perform operations such as adding
two polynomials.
Factorial and Factors
Write a program to calculate the factorial and compute the factors of a given number:
(i) Using recursion
(i) Using iteration.
Fibonacci Series
Write a program to display the Fibonacci series:
(i) Using recursion
(i) Using iteration.
GCD Calculation
Write a program to calculate the GCD of two numbers:
(i) Using recursion
(ii) Without recursion.
Binary Search Tree (BST) Operations
Create a Binary Search Tree and implement the following operations:
(@) Insertion (both recursive and iterative implementations)
(b) Deletion by copying
(c) Deletion by merging
(d) Search for a number in the BST
(e) Display preorder, postorder, and inorder traversals (recursively)
(F) Display preorder, postorder, and inorder traversals (iteratively)
(9) Display level-by-level traversals
(h) Count the number of non-leaf nodes and leaf nodes
(i) Display the height of the tree
(j) Create a mirror image of the tree
(K) Check if two BSTs are equal.
Sparse Matrix Conversion
Write a program to convert a Sparse Matrix into its non-zero form and vice versa.
Reverse Stack Using Additional Stack
Write a program to reverse the order of elements in a stack using an additional stack.
Reverse Stack Using Additional Queue
Write a program to reverse the order of elements in a stack using an additional queue.
Diagonal Matrix Implementation
Implement a Diagonal Matrix using a one-dimensional array.
Lower Triangular Matrix Implementation
Implement a Lower Triangular Matrix using a one-dimensional array.
Upper Triangular Matrix Implementation

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Implement an Upper Triangular Matrix using a one-dimensional array.
21. Symmetric Matrix Implementation
Implement a Symmetric Matrix using a one-dimensional array.
22. Threaded Binary Tree Implementation
Create a Threaded Binary Tree based on in-order traversal. Implement operations such as:
« Finding the successor/predecessor of an element
« Inserting an element
« Performing in-order traversal.
23. AVL Tree Operations
Implement various operations (searching, insertion, deletion) on an AVL Tree.
24. Sorting Algorithms
Implement the following sorting algorithms:
+ Selection Sort
+ Insertion Sort
- Bubble Sort
+ Quick Sort.

Suggested Readings:

1. Adam Drozdek, "Data Structures and algorithm in C++", Third Edition, Cengage Learning,
2012.

2. SartajSahni, Data Structures, "Algorithms and applications in C++", Second Edition, Universities
Press, 2011.

3. Aaron M. Tenenbaum, Moshe J. Augenstein, Yedidyah Langsam, "Data Structures Using C and
C++:, Second edition, PHI, 2009.

4. Robert L. Kruse, "Data Structures and Program Design in C++", Pearson, 1999.

5. D.S Malik, Data Structure using C++, Second edition, Cengage Learning, 2010.

6. Mark Allen Weiss, "Data Structures and Algorithms Analysis in Java", Pearson Education, 3rd

edition, 2011

7. Aaron M. Tenenbaum, Moshe J. Augenstein, Yedidyah Langsam, "Data Structures Using Java,
2003.

8. Robert Lafore, "Data Structures and Algorithms in Java, 2/E", Pearson/ Macmillan Computer
Pub, 2003

9. John Hubbard, "Data Structures with JAVA", McGraw Hill Education (India) Private Limited; 2
edition, 2009

10. Goodrich, M. and Tamassia, R. "Data Structures and Algorithms Analysis in Java", 4th Edition,
Wiley, 2013

11. Herbert Schildt, "Java The Complete Reference (English) 9th Edition Paperback™, Tata McGraw
Hill, 2014.

12. D. S. Malik, P.S. Nair, "Data Structures Using Java", Course Technology, 2003.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

MJ-4: Computer Architecture Credits 04 (F.M.-75)

OBJECTIVE OF THE COURSE

o Provide a comprehensive understanding of computer system design and functionality.

« Cover fundamental concepts of computer organization, including processor
architecture, memory hierarchies, and input/output systems.

« Explore instruction set architectures (ISA) and their impact on hardware performance
and efficiency.

o Delve into parallel processing and multi-core architectures to illustrate advancements
in modern computing.

« Develop practical skills through laboratory sessions and programming assignments
involving assembly language and hardware simulation tools.

OUTCOME OF THE COURSE
By the end of the course, students will be able to:

- Describe the fundamental components of a computer system,
including processors, memory, and 1/O systems.
- Compare and contrast different instruction set architectures (ISA).
« Analyze the impact of ISA design on hardware performance and efficiency.
- Design and implement data paths and control units for a simple processor.
- Analyze how these architectures enhance system performance and scalability.
« Write, debug, and optimize assembly language programs.
« Use hardware simulation tools to test and validate programs.
- Design and optimize computer systems for real-world applications.
- Demonstrate the ability to work in teams on system design projects.

MJ-4T: Computer Architecture Credits 03

Module I: Introduction 20 Hrs.
Logic gates, Boolean algebra, combinational circuits, circuit simplification, flip-flops and sequential
circuits, decoders, multiplexers, registers, counters and memory units.

Module Il: Data Representation and Basic Computer Arithmetic 10 Hrs.
Number systems, complements, fixed and floating point representation, character representation, addition,
subtraction, magnitude comparison, multiplication and division algorithms for integers

Module I11: Basic Computer Organization and Design 8 Hrs.
Computer registers, bus system, instruction set, timing and control, instruction cycle, memory reference,
Organization of a basic single-bus computer system.

Module 1V: Central Processing Unit 10 Hrs.
Register organization, arithmetic and logical operations, Instruction formats, addressing modes, instruction
codes, machine language, assembly language, RISC, CISC architectures, Hardwired and micro programmed
control unit design.

Module V: Memory Organization 6 Hrs.
Memory interfacing and addressing, cache memory organization.

Module VI: Input-Output Organization 6 Hrs.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Input / Output: External Devices, 1/0 Modules, Programmed 1/O, Interrupt-Driven I/O, Direct
Memory Access, I/0 Channels.

MJ-4P: Computer Architecture Lab Credits 01

Laboratory Assignments on Simulation/Hardware Kit

1. 8-bit Arithmetic Operations
Implement and simulate the following 8-bit arithmetic operations:

- Addition
« Multiplication
- Division

2. 8-bit Register Design
Design and implement an 8-bit register using simulation or hardware.
3. Memory Unit Design and Operations
Design a memory unit and perform basic memory operations such as read and write.
4. 8-bit Simple ALU Design
Design and implement an 8-bit Arithmetic Logic Unit (ALU) capable of performing basic
arithmetic and logical operations.
5. 8-bit Simple CPU Design
Design and implement a basic 8-bit CPU capable of executing simple instructions.
6. Interfacing CPU and Memory
Interface the designed CPU with the memory unit and demonstrate data transfer and instruction
execution.
7. Microoperations and Instruction Set Design

- Create microoperations and associate them with instructions (excluding interrupts).
- Design the register set, memory, and instruction set.
« Use this machine for subsequent assignments in this section.

8. Fetch Routine Implementation
Create and implement the fetch routine of the instruction cycle.

9. Simulation of Register Reference Instructions
Simulate the machine to determine the contents of the following registers in hexadecimal after
executing each of the given register reference instructions:

AC (Accumulator), E (Extend), PC (Program Counter), AR (Address Register), and IR
(Instruction Register).

Instructions to Simulate:
a. CLA (Clear AC)

b. CLE (Clear E)

c. CMA (Complement AC)
d. CME (Complement E)

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

e. CIR (Circulate Right AC and E)
f. CIL (Circulate Left AC and E)
g. INC (Increment AC)

h. SPA (Skip if AC is Positive)

i. SNA (Skip if AC is Negative)

j. SZA (Skip if AC is Zero)

k. SZE (Skip if E is Zero)

I. HLT (Halt)

Initialization:
« AC=(A937)6
« PC=(022)46
- E=1

. Simulation of Memory Reference Instructions (Direct Addressing)
Simulate the machine for the following memory-reference instructions with 1 = 0 (direct
addressing) and address part = 082.

- Store the instruction at address 022 in RAM.
« Initialize the memory word at address 082 with the operand B8F2.
« Initialize AC with A937.

Instructions to Simulate:
a. ADD

b. AND

c. LDA

d. STA

e. BUN

f. BSA

g.1SzZ

Determine the contents of the following registers in hexadecimal after execution:
AC, DR (Data Register), PC, AR, and IR.

. Simulation of Memory Reference Instructions (Indirect Addressing)
Simulate the machine for the memory-reference instructions with I = 1 (indirect addressing)
and address part = 082.
- Store the instruction at address 026 in RAM.
« Initialize the memory word at address 082 with the value 298.
« Initialize the memory word at address 298 with the operand B8F2.
 Initialize AC with A937.

Determine the contents of the following registers in hexadecimal after execution:
AC, DR, PC, AR, and IR.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

12. Machine Modification with New Instruction Format
Modify the machine created in Practical 1 according to the following instruction format:

Instruction Format:
0 23 4 15
Opcode | Address

- The instruction format contains a 3-bit opcode, a 1-bit addressing mode (1), and a 12-
bit address.
« Addressing modes:

= | =0: Direct addressing
= | =1: Indirect addressing

Tasks:

a. Create a new 1-bit register (I).

b. Create two new microinstructions:

i. Check the opcode to determine the instruction type (Memory Reference/Register
Reference/Input-Output) and jump accordingly.

ii. Check the I bit to determine the addressing mode and jump accordingly.

Suggested Readings:

1. M. Mano, Computer System Architecture, Pearson Education 1992

2. W. Stallings, Computer Organization and Architecture Designing for Performance, 8 Edition,
Prentice Hall of India,2009

3. M.M. Mano, Digital Design, Pearson Education Asia,2013

4. Carl Hamacher, Computer Organization, Fifth edition, McGrawHill, 2012.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

MJ-5: OOPs using C++ Credits 04 (F.M.-75)

OBJECTIVE OF THE COURSE

« Provide a deep understanding of object-oriented programming principles and their
application using C++,

« Cover fundamental concepts such as classes, objects, inheritance, polymorphism, and
encapsulation.

o Emphasize the creation and manipulation of complex data structures through dynamic
memory management and operator overloading.

« Develop practical programming skills through hands-on projects and assignments
involving real-world applications.

« Provide experience in debugging and testing C++ applications to ensure reliability and
performance.

o Prepare students for advanced programming and software development roles.

OUTCOME OF THE COURSE
By the end of the course, students will be able to:

« Describe the core concepts of OOP, including classes, objects, inheritance, polymorphism, and
encapsulation.

« Create classes and objects to model real-world entities.

» Implement constructors, destructors, and member functions to define object behavior.

» Use inheritance to create hierarchical class structures.

* Implement polymorphism through function overriding and virtual functions.

« Allocate and deallocate memory dynamically using new and delete operators.

» Overload operators to perform custom operations on user-defined data types.

« Utilize the Standard Template Library (STL) for efficient data handling (e.qg., vectors, lists,
maps).

« Design and implement C++ programs to solve real-world problems.

» Apply OOP principles to create modular, reusable, and maintainable code.

« Write test cases to ensure the reliability and performance of applications.

MJ-5: OOPs using C++ Credits 03

Module-I: Introduction to OOPs and C++ Element 15 Hrs.
Structured vs. Object Oriented Programming, Object Oriented Programming Concepts, Benefits of Object
oriented programming, Object Oriented Languages, Structure of a C++ program, Data Types, Operators
and Control Structures, Iteration / Loop Construct, Arrays, Functions (User defined Function, Inline
Function, Function Overloading), User Defined Data Types (Structure, Union and Enumeration).

Module I1: Class, Object, Constructor & Destructor: 15 Hrs.
Defining Classes, Encapsulation, Instantiating Objects, Member Functions, Accessibility labels, Static
Members, Friend Function, Purpose of Constructors, Default Constructor, Parameterized Constructors,
Copy Constructor, Destructor.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Module I11: Pointer, Polymorphism & Inheritance: 20 Hrs.

Pointer (Pointer to Object, this Pointer, Pointer to Derive Class), Introduction to Polymorphism (Compile
time Polymorphism, Run time Polymorphism), Operator Overloading, Overloading Unary and Binary
Operators, Virtual Function, Pure Virtual Functions, Inheritance (Single Inheritance, Multiple Inheritance,
Multilevel Inheritance, Hierarchical Inheritance, Hybrid Inheritance), Virtual Base Class, Abstract Class.

Module 1V: Exception Handling: 10 Hrs.
Exceptions in C++ Programs, Try and Catch Expressions, Exceptions with arguments

Suggested Readings:

1. HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGraw Hill.2003
2. BjarneStroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley ,2013.
3. BjarneStroustroup, "Programming -- Principles and Practice using C++", 2" Edition, Addison-

Wesley 2014.

4. E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill Education,
2008.

5. Paul Deitel, Harvey Deitel, "C++ How to Program", 8th Edition, Prentice Hall, 2011.

6. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.

7. Andrew Koeni, Barbara, E. Moo, "Accelerated C++", Published by Addison-Wesley ,

1. 2000. 7. Scott Meyers, "Effective C++", 3rd Edition, Published by Addison-Wesley,

2. 2005.

8. Harry, H. Chaudhary, "Head First C++ Programming: The Definitive Beginner's Guide",

3. First Create space Inc, O-D Publishing, LLC USA.2014

9. Walter Savitch, "Problem Solving with C++", Pearson Education, 2007.

10. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, "C++ Primer", Published by

4. Addison-Wesley, 5th Edition, 2012
11. E Balagurusamy , Object Oriented Programming with C++, 5 th edition, Tata McGraw, 2011.
12. Deitel and Deitel , “C++: How to Program”, 9th Edition, Pearson, 2013.

MJ-5P: OOPs using C++ (Lab) Credits 01

C++ Programming Assignments
1. Sum of Digits
Write a C++ program to find the sum of individual digits of a positive integer.
2. Reverse a Number
Write a C++ program to print a given number in reverse order.
3. Non-Fibonacci Numbers
Write a C++ program to print the first 100 non-Fibonacci numbers.
4. Decimal to Hexadecimal Conversion
Write a C++ program to convert a decimal number into a hexadecimal number.
5. Binary Search
Write a C++ program to search for an element in an array using the binary search technique.
6. Compound Interest with Default Arguments
Write a C++ program to calculate compound interest in a bank using default arguments.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Student Details Using Classes and Objects
Write a C++ program to display student details using classes and objects (store objects as an array).
Stack Implementation Using Array
Write a C++ program to implement a stack using an array.
Matrix Multiplication with Dynamic Memory Allocation
Write a C++ program for matrix multiplication using:

+ Dynamic memory allocation

« Copy constructor

« Overloading of the assignment operator.
Matrix Transpose
Write a C++ program to read a two-dimensional matrix and display its transpose.
Inline Function Implementation
Write a C++ program to implement an inline function.
Constructor and Destructor Implementation
Write a C++ program to implement constructor and destructor.
Copy Constructor Functionality
Write a C++ program to implement the functionalities of a copy constructor.
Constructor Overloading for Account Details
Write a C++ program to display the account number and balance using constructor overloading.
Volume Calculation Using Function Overloading
Write a C++ program to find the volume of:

« Cube

+ Rectangle

« Cylinder

using function overloading.

Operator Overloading Using Friend Functions
Write a C++ program to overload the ++ and -- operators using friend functions.
Complex Number Addition Using Operator Overloading
Write a C++ program to add two complex numbers using binary operator overloading.
Inheritance Implementation
Write a C++ program to implement:

+ Single inheritance

« Multilevel inheritance.
Multiple Inheritance with Virtual Functions

Write a C++ program to draw a rectangle, square, and circle using multiple inheritance with virtual

functions.

Hybrid Inheritance Implementation

Write a C++ program to implement hybrid inheritance.

Student Details Using Virtual Base Class

Write a C++ program to display student details using a virtual base class.
Pure Virtual Function Implementation

Write a C++ program to implement a pure virtual function.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Reference Books:

1. E. Balaguruswami-Object Oriented programming with C++
2. Kris James-Success with C++

3. David Parsons-Object Oriented programming with C++

4. D. Ravichandran-Programming in C++

5. Dewhurst and Stark-Programming in C++

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

MJ-6: Operating System Credits 04 (F.M.-75)

OBJECTIVE OF THE COURSE

o Provide a comprehensive understanding of fundamental concepts and functions of modern
operating systems.

e Cover the architecture and components of operating systems, including process management,
memory management, file systems, and input/output systems.

o Emphasize the role of operating systems in resource allocation and system security.

o Offer hands-on experience in implementing and configuring operating system features through
labs work.

o Equip students with the skills to analyze, design, and optimize operating systems,

OUTCOME OF THE COURSE

By the end of the course, students will be able to:

« Describe the architecture and components of modern operating systems.

- Explain the functions of process management, memory management, file systems, and
I/O systems.

+ Understand and implement process scheduling algorithms (e.g., FCFS, Round Robin,
SJF).

- Explain memory management techniques like paging, segmentation, and virtual memory.

- Implement process synchronization mechanisms like semaphores .

« Understand and resolve issues like deadlocks and race conditions.

- Understand the structure and organization of file systems.

« Implement file system operations like file creation, deletion, and access control.

- Explain how operating systems allocate resources like CPU, memory, and I/O devices.

« Implement basic security measures like user authentication and access control.

MJ-6T: Operating System Credits 03

Module I: Introduction 10 Hrs.

Basic OS functions, resource abstraction, types of operating systems—multiprogramming systems, batch
systems , time sharing systems; operating systems for personal computers & workstations, process control
& real time systems.

Case study on Linux system 6 Hrs.
e Cloud computing (3 lectures)
e Linux evolution and Linux distros (2 lectures)
e Linux file system (1 lecture)

Module I1: Operating System Organization 6 Hrs.
Processor and user modes, kernels, system calls and system programs.

Module I11: Process Management 16 Hrs.

System view of the process and resources, process abstraction, process hierarchy, threads, threading issues,
thread libraries; Process Scheduling, non-pre-emptive and pre-emptive scheduling algorithms; concurrent
processes, critical section, semaphores, methods for inter- process communication; deadlocks.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Module 1V: Memory Management 10 Hrs.
Physical and virtual address space; memory allocation strategies — fixed and variable partitions, paging,
segmentation, virtual memory

Module V: File and 1/0O Management 8 Hrs.
Directory structure, file operations, file allocation methods, device management.

Module VI: Protection and Security 4 Hrs.
Policy mechanism, Authentication, Internal access Authorization.

MJ-6P: Operating System Lab Credits 01

Programming Assignments on Linux System Programming and Scheduling Algorithms

1. Parent and Child Processes Using fork() and exec()
Write a program using fork() and/or exec() commands to demonstrate the following scenarios:
a. Parent and child execute the same program and the same code.
b. Parent and child execute the same program but different code.
c. Before terminating, the parent waits for the child to finish its task using wait().
2. Linux Kernel and CPU Information
Write a program to report the behavior of the Linux kernel, including:

« Kernel version
« CPU type and model (CPU information).

3. Linux Kernel and Memory Information
Write a program to report the behavior of the Linux kernel, including:

« Configured memory
« Amount of free and used memory (memory information).

4. File Details
Write a program to print details of a file, including:

« Owner access permissions
File access time
The file name should be provided as a command-line argument.

5. File Copy Using System Calls
Write a program to copy files using system calls (e.g., open(), read(), write(), close()).
6. FCFS Scheduling Algorithm
Write a program to implement the First-Come-First-Serve (FCFS) CPU scheduling algorithm.
7. Round Robin Scheduling Algorithm
Write a program to implement the Round Robin (RR) CPU scheduling algorithm.
8. SJF Scheduling Algorithm
Write a program to implement the Shortest Job First (SJF) CPU scheduling algorithm.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

9. Sum of Numbers Using Thread Library
Write a program to calculate the sum of n numbers using the thread library (e.g., pthread in
Linux).

10. Memory Allocation Strategies
Write a program to implement the following memory allocation strategies:

« First-Fit
. Best-Fit
- Worst-Fit.

Suggested Readings:

1. ASilberschatz, P.B. Galvin, G. Gagne, Operating Systems Concepts, 8th Edition,
John Wiley Publications 2008.

2. A.S. Tanenbaum, Modern Operating Systems, 3rd Edition, Pearson Education
2007.

3. G. Nutt, Operating Systems: A Modern Perspective, 2nd Edition Pearson
Education 1997.

4. W. Stallings, Operating Systems, Internals & Design Principles, 5th Edition,
Prentice Hall of India. 2008.

5. M. Milenkovic, Operating Systems- Concepts and design, Tata McGraw Hill 1992.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

MJ-7: Computer Network Credits 04 (F.M.-75)

OBJECTIVE OF THE COURSE

The course aims to provide students with a comprehensive understanding of computer networks,
focusing on both theoretical concepts and practical applications. By the end of the course, students will:
» Gain a foundational knowledge of network architectures, including the OSI (Open Systems
Interconnection) and TCP/IP (Transmission Control Protocol/Internet Protocol) models.
» Understand the functions of key network devices such as routers, switches, and hubs.
» Learn the principles of network design, addressing, and subnetting.
» Develop the skills to analyze, design, and implement network solutions.

OUTCOME OF THE COURSE

By the end of the course, students will be able to:
» Describe the OSI and TCP/IP models and their relevance in network communication.
« Differentiate between the functions of each layer in these models.
» Recognize the roles of routers, switches, hubs, and other network devices.
« Configure and troubleshoot these devices in a network environment.
» Explain the working of protocols like HTTP, FTP, TCP, and UDP.
« Design network topologies and perform subnetting for efficient IP addressing.
» Configure and manage networks using industry-standard tools.
« Diagnose and resolve common network problems using troubleshooting techniques.
» Implement basic network security measures to protect data and devices.
« Understand the importance of encryption, firewalls, and secure protocols.

MJ-7T: Computer Network Credits 03

Module I: Introduction to Computer Networks 8 Hrs.
Network definition; network topologies; network classifications; network protocol; layered network
architecture; overview of OSI reference model; overview of TCP/IP protocol suite.

Module 11: Data Communication Fundamentals and Techniques 10 Hrs.

Analog and digital signal; data-rate limits; digital to digital line encoding schemes; pulse code modulation;
parallel and serial transmission; digital to analog modulation-; multiplexing techniques- FDM, TDM,;
transmission media.

Module I11: Networks Switching Techniques and Access mechanisms 10 Hrs.
Circuit switching; packets witching- connectionless datagram switching, connection-oriented virtual
circuit switching; dial-up modems; digital subscriber line; cable TV for data transfer.

Module 1V: Data Link Layer Functions and Protocol 10 Hrs.
Error detection and error correction techniques; data-link control- framing and flow control; error
recovery protocols- stop and wait ARQ, go-back-n ARQ; Point to Point Protocol on Internet.

Module V: Multiple Access Protocol and Networks 5 Hrs.
CSMA/CD protocols; Ethernet LANS; connecting LAN and back-bone networks- repeaters, hubs,
switches, bridges, router and gateways;

Module VI1: Networks Layer Functions and Protocols 6 Hrs.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Routing; routing algorithms; network layer protocol of Internet- IP protocol, Internet control protocols.

Module VI1I: Transport Layer Functions and Protocols 6 Hrs.
Transport services- error and flow control, Connection establishment and release — three way handshake;

Module VII11: Overview of Application layer protocol 5 Hrs.
Overview of DNS protocol; overview of WWW &HTTP protocol.

MJ-7P: Computer Network Lab Credits 01

Programming Tasks Using C++/Python/Java
1. Cyclic Redundancy Check (CRC) Error Detection

Simulate the CRC error detection algorithm for a noisy channel.
2. Stop and Wait Protocol
Simulate and implement the Stop and Wait Protocol for a noisy channel.
3. Go-Back-N Sliding Window Protocol
Simulate and implement the Go-Back-N Sliding Window Protocol.
4. Selective Repeat Sliding Window Protocol
Simulate and implement the Selective Repeat Sliding Window Protocol.
5. Distance Vector Routing Algorithm
Simulate and implement the Distance Vector Routing Algorithm.
6. Dijkstra's Algorithm for Shortest Path Routing
Simulate and implement Dijkstra's Algorithm to find the shortest path in a network.
7. Packet Capture and Analysis Using Wireshark
Perform experiments using Wireshark for:
a. Filtering packets
b. Inspecting packets.
8. HDLC Frame Implementation
Write a program for an HDLC frame to perform:
i. Bit stuffing
ii. Character stuffing.
9. Distance Vector Algorithm for Path Transmission
Write a program for the Distance Vector Algorithm to find a suitable path for data transmission.
10. Dijkstra's Algorithm for Shortest Routing Path
Implement Dijkstra‘s Algorithm to compute the shortest routing path.
11. CRC-CCITT Polynomial Implementation
Use the CRC-CCITT polynomial to obtain the CRC code. Verify the program for:
a. Without error
b. With error.
12. Stop and Wait Protocol and Sliding Window Protocol
Implement the Stop and Wait Protocol and Sliding Window Protocol.
13. Congestion Control Using Leaky Bucket Algorithm
Write a program for congestion control using the Leaky Bucket Algorithm.

Simulation Tasks Using NS2/NS3
1. Wired Network: Two Nodes and Packet Transmission

Write a TCL script to connect two nodes and send packets in a wired network.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

10.

11.

12.

STAR Topology with SFQ Queue Management

Write a TCL script for a given STAR topology using Stochastic Fair Queuing (SFQ) at intermediate
nodes. Use different colors for packets originating from different nodes.

RING Topology with Dynamic Configuration

Write a TCL script for a given RING topology in a wired network using a For loop to make the
topology dynamic.

TCP Connection in Wired Network

Write a TCL script for a given topology in a wired network using a TCP connection and sending data
through the nodes.

UDP Connection in Wired Network

Write a TCL script for a given topology in a wired network using a UDP connection and sending data
through the nodes.

Point-to-Point Network with Duplex Links

Implement a three-node point-to-point network with duplex links. Set the queue size, vary the
bandwidth, and find the number of packets dropped.

Ping/Traceroute Over a 6-Node Network

Implement the transmission of ping messages/traceroute over a network topology consisting of 6 nodes.
Find the number of packets dropped due to congestion.

Ethernet LAN with Multiple Traffic Nodes

Implement an Ethernet LAN using n nodes. Set multiple traffic nodes and plot the congestion window
for different source/destination pairs.

Point-to-Point Network with Duplex Links (Repeated)

Implement a three-node point-to-point network with duplex links. Set the queue size, vary the
bandwidth, and find the number of packets dropped.

Ping/Traceroute Over a 6-Node Network (Repeated)

Implement the transmission of ping messages/traceroute over a network topology consisting of 6 nodes.
Find the number of packets dropped due to congestion.

Ethernet LAN with Multiple Traffic Nodes (Repeated)

Implement an Ethernet LAN using n nodes. Set multiple traffic nodes and plot the congestion window
for different source/destination pairs.

Wireless LAN: Simple ESS and Performance Analysis

Implement a simple ESS (Extended Service Set) with transmitting nodes in a wireless LAN. Simulate
and determine the performance with respect to packet transmission.

Suggested Readings:

1. B. A. Forouzan: Data Communications and Networking, Fourth edition, THM, 2007.
2. A.S. Tanenbaum: Computer Networks, Fourth edition, PHI, 2002.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

MINOR (MI)
MI - 3: Digital Logic Credits 04(Full Marks: 75)

OBJECTIVE OF THE COURSE

o Learn the basics of binary, octal, decimal, and hexadecimal number systems and conversions
between them.

o Master the principles of Boolean algebra, including logic operations, truth tables, and De
Morgan's laws.

e Gain proficiency in simplifying Boolean expressions using techniques such as Karnaugh maps
and the Quine-McCluskey method.

o Develop skills in designing basic combinational logic circuits, including adders, subtractors,
multiplexers, and decoders.

e Understand the behaviour and design of sequential circuits, including flip-flops, latches, counters,
and registers.

o Explore circuit minimization techniques to reduce complexity and cost in digital designs.

OUTCOME OF THE COURSE

o Learn and apply Boolean algebra principles to simplify and analyse logical expressions.

o Develop skills in designing and implementing combinational and sequential logic circuits like
multiplexers, decoders, and flip-flops.

o Learn the operation, behaviour, and application of basic memory elements like SR latches, JK, D,
and T flip-flops.

o Develop the ability to analyse and design sequential circuits, including counters and shift
registers.

MI - 3T: Digital Logic Credits 03
Course contents:

Number systems: 15 Hrs.
Positional number systems; Binary, Octal, Hexadecimal, and Decimal number systems; conversion of a
number in one system to the other; Representation of signed numbers-signed magnitude, one's complement,
2's complement representation techniques, Merits of 2's complement representation scheme; Various binary
codes - BCD, excess -3, Gray code, ASCIl, EBCDIC; Binary arithmetic- addition, subtraction,
multiplication, and division of unsigned binary numbers.

Boolean algebra: 15 Hrs.
Fundamental of Boolean Expression: Definition of Boolean Algebra, Postulates, Basic Logic gates: (OR,
AND, NOT); Universal Logic Gates: (NAND & NOR); Basic logic operations: logical sum (OR), logical
product (AND), complementation (NOT), anti-coincidence (EX-OR) and coincidence (EX-NOR)
operations: Truth tables of Basic gates; Boolean Variables and Expressions; De-Morgan’s theorem;
Boolean expressions Simplification- Algebraic technique, Karnaugh map technique, 3 variable and 4
variable Karnaugh map.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Combinational Circuits: 15 Hrs.

Half Adder, Full Adder (3-bit), Half Subtractor, Full Subtractor (3-bit), and construction using Basic Logic
Gates (OR, AND, NOT) and Universal Logic Gates (NAND & NOR), Multiplexer, Encoders,
Demultiplexer, and Decoder circuits.

Sequential Circuits: 15 Hrs.

Latch, RS, D, JK, T Flip Flops; Race condition, Master Slave JK Flip Flop; Registers: Serial Input Serial
Output (SISO), Serial Input Parallel Output (SIPO), Parallel input Serial Output (PISO), Parallel Input
Parallel Output (PIPO), Universal Shift Registers; Counters: Asynchronous Counter, Synchronous Counter.

MI - 3P: Digital Logic Lab Credits 01

List of Experiments: Digital Logic Design

1. Verification of Logic Gates
Verify the truth tables of the following two-input logic gates:
(i) OR gate
(it) AND gate
(iii) NOR gate
(iv) NAND gate
(v) Exclusive-OR (XOR) gate
(vi) Exclusive-NOR (XNOR) gate.
2. Combinational Circuit Design
Design a simple combinational circuit with four variables, obtain the minimal expression, and
verify the truth table using a Digital Trainer Kit.
3. 3-t0-8 Line Decoder/Demultiplexer
Verify the functional table of a 3-to-8 line decoder/demultiplexer.
4. 4-Variable Logic Function Using Multiplexer
Verify a 4-variable logic function using an 8-to-1 multiplexer.
5. Full Adder Circuit
Design a full adder circuit and verify its functional table.
6. Flip-Flop Functional Tables
Verify the functional tables of the following flip-flops:
(i) JK Edge-Triggered Flip-Flop
(i1) JK Master-Slave Flip-Flop
(iii) D Flip-Flop.
7. 4-Bit Ring Counter
Design a 4-bit ring counter using D Flip-Flops or JK Flip-Flops and verify the output.
8. 4-Bit Johnson’s Counter
Design a 4-bit Johnson’s counter using D Flip-Flops or JK Flip-Flops and verify the output.
9. 4-Bit Universal Shift Register
Verify the operation of a 4-bit universal shift register for different modes of operation.
10. MOD-8 Ripple Counter

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

« Draw the circuit diagram of a MOD-8 ripple counter.
- Construct the circuit using T Flip-Flops.
« Test it with a low-frequency clock and sketch the output waveforms.

11. MOD-8 Synchronous Counter

» Design a MOD-8 synchronous counter using T Flip-Flops.
» Verify the result and sketch the output waveforms.

12. Single-Bit Comparator and 7-Segment Display

(a) Draw the circuit diagram of a single-bit comparator and test the output.
(b) Construct a 7-segment display circuit using a decoder and 7-segment LED, and test it.

Suggested Readings:

1. Morris Mano, Charles R. Kime, Logic and computer design fundamentals, Pearson Prentice Hall,
2004

Basavaraj,B., Digital fundamentals, New Delhi: Vikas Publishing House, 1999.

Kandel Langholz, Digital Logic Design, Prentice Hall, 1988.

4. Rafiquzzaman & Chandra, Modern Computer Architecture, West Pub. Comp., 1988.

wn

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

MI-4: Data Structure Credits 04(Full Marks: 75)

OBJECTIVE OF THE COURSE

e Introduce students to fundamental concepts of data structures and algorithms, including the
importance of data organization and management in solving computational problems efficiently.

o Provide hands-on experience with implementing data structures such as arrays, linked lists, stacks,
queues, trees, heaps, graphs, and hash tables using a programming language.

e Show how to apply data structures to solve real-world problems. This involves understanding which
data structure is appropriate for a given situation and how to manipulate data structures to optimize
performance.

o Develop problem-solving skills by practicing the design and implementation of algorithms using
appropriate data structures, focusing on improving solutions' efficiency.

OUTCOME OF THE COURSE

o Develop the ability to design and analyse algorithms, understand their time and space
complexities using Big O notation, and make informed decisions about the most efficient
algorithms to use in different scenarios.

« Enhance their problem-solving skills by applying data structures and algorithms to solve
computational problems effectively and efficiently.

« Learn how to choose the appropriate data structures for specific applications, optimizing
data storage, retrieval, and manipulation in software systems.

e Have a solid foundation for advanced topics in computer science, such as algorithms,
machine learning, artificial intelligence, databases, and systems design, where efficient
data management is crucial.

MI-4T: Data Structure Credits 03
Course contents:

Arrays 3 Hrs.
Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked Representation)

Stacks 5 Hrs.
Implementing single/multiple stacks in an Array; Prefix, Infix, and Postfix expressions, Utility and
conversion of these expressions from one to another; Applications of a stack; Limitations of Array
representation of a stack

Linked Lists 7 Hrs.
Singly, Doubly, and Circular Lists (Array and Linked representation); Normal and Circular representation
of Stack in Lists; Self Organizing Lists; Skip Lists

Queues 5Hrs.
Array and Linked representation of Queue, De-queue, and Priority Queues

Recursion 5 Hrs.
Developing Recursive Definition of Simple Problems and their implementation; Advantages and

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Limitations of Recursion; Understanding what goes behind Recursion (Internal Stack Implementation)

Trees 10 Hrs.
Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion, Recursive and lterative
Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion, Traversals); Height-
Balanced Trees (Various operations on AVL Trees). Tree traversal techniques.

Searching and Sorting 7 Hrs.
Linear Search, Binary Search, Comparison of Linear and Binary Search, Selection Sort, Insertion Sort,
Bubble Sort, Quick Sort, Comparison of Sorting Techniques

MI-4P: Data Structures Lab Credits 01

Programming Assignments

1. Searchingina List

Write a program to search for an element in a list. Provide the user with the option to perform

either Linear Search or Binary Search. Use template functions to make the program
generic.

2. Sorting a List
Write a program using templates to sort a list of elements. Allow the user to choose
between Insertion Sort, Bubble Sort, or Selection Sort.

3. Linked List Implementation
Implement a Linked List using templates. Include functions for:

« Insertion

« Deletion

« Searching for a number
« Reversing the list

4. Doubly Linked List Implementation
Implement a Doubly Linked List using templates. Include functions for:

« Insertion

« Deletion

« Searching for a number
« Reversing the list.

5. Circular Linked List Implementation
Implement a Circular Linked List using templates. Include functions for:

« Insertion

« Deletion

« Searching for a number
« Reversing the list.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Stack Operations Using Linked List
Implement Stack operations (push, pop, peek, etc.) using a Linked List implementation.
Stack Operations Using Array
Implement Stack operations (push, pop, peek, etc.) using an Array implementation.
Use templates to make the stack generic.
Queue Operations Using Circular Array
Implement Queue operations (enqueue, dequeue, etc.) using a Circular
Array implementation. Use templates to make the queue generic.
Double-Ended Queue (Deque) Operations
Create and perform operations on a Double-Ended Queue (Deque) using a Linked
List implementation.
Polynomial Addition Using Linked List
Write a program to represent a polynomial using a Linked List and perform the addition of
two polynomials.
Factorial and Factors of a Number
Write a program to calculate the factorial and compute the factors of a given number:
(1) Using recursion
(i) Using iteration.
Fibonacci Series
Write a program to display the Fibonacci series:
(1) Using recursion
(i) Using iteration.
GCD of Two Numbers
Write a program to calculate the GCD of two numbers:
(1) Using recursion
(if) Without recursion.
Sparse Matrix Conversion
Write a program to convert a Sparse Matrix into its non-zero form and vice versa.
Reverse Stack Using Additional Stack
Write a program to reverse the order of elements in a stack using an additional stack.
Reverse Stack Using Additional Queue
Write a program to reverse the order of elements in a stack using an additional queue.
Diagonal Matrix Implementation
Write a program to implement a Diagonal Matrix using a one-dimensional array.
Lower Triangular Matrix Implementation
Write a program to implement a Lower Triangular Matrix using a one-dimensional array.
Upper Triangular Matrix Implementation
Write a program to implement an Upper Triangular Matrix using a one-dimensional
array.
Symmetric Matrix Implementation
Write a program to implement a Symmetric Matrix using a one-dimensional array.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University

http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

Suggested Readings:

1. Gilberg and Forouzan: “Data Structure- A Pseudo code approach with C” by
Thomson publication

2. “Data structure in C” by Tanenbaum, PHI publication / Pearson publication.

3. Pai: ”Data Structures & Algorithms; Concepts, Techniques & Algorithms Tata
McGraw Hill.

4. “Fundamentals of data structure in C” Horowitz, Sahani & Freed, Computer Science
Press.

5. “Fundamental of Data Structure” (Schaums Series) Tata-McGraw-Hill.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

SKILL ENHANCEMENT COURSE (SEC)

SEC 3: PYTHON Credits 03 (Full Marks: 50)
OBJECTIVE OF THE COURSE -

The objectives of this course are to make the student understand programming language, programming,
concepts of Loops, reading a set of Data, stepwise refinement, Functions, Control structure, Arrays. After
completion of this course the student is expected to analyze the real-life problem and write a program in
‘Python’ language to solve the problem. The main emphasis of the course will be on problem solving aspect
i.e., developing proper algorithms.
After completion of the course the student will be able to

o Develop efficient algorithms for solving a problem.

o Use the various constructs of a programming language viz. conditional, iteration and recursion.

e Implement the algorithms in “Python” language.

OUTCOME OF THE COURSE -

By the end of the course, students will be able to:

» Describe the fundamental concepts of programming, including variables, data types, loops, and control
structures.
» Understand the role of functions and arrays in organizing code and data.
» Analyze problems and design stepwise algorithms to solve them.
» Use arrays (lists) to store and manipulate data.
» Identify and fix errors in Python programs using debugging techniques.
» Test programs to ensure they meet the problem requirements.
« Apply Python programming skills to solve practical problems, such as:
Mathematical calculations
Data processing
Simple automation tasks.
« Demonstrate the ability to translate real-life scenarios into functional code.
» Explore and use Python libraries (e.g., math, random) to enhance program functionality.
» Work with Python development tools like IDLE or Jupyter Notebook.
« Build a strong foundation in programming to prepare for advanced topics in computer science and
software development.
» Develop skills relevant to careers in software development, data analysis, and automation

SEC 3P: PYTHON Credits 03

Programming Assignments

1. Problem Solving and Debugging
a. Write a Python program to solve a simple problem (e.g., finding the largest of three
numbers).
b. Identify and fix errors in a given program (debugging).

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

10.

11.

c. Document the program with comments and a brief description of the problem-solving
approach.
Flowchart and Algorithm Design
a. Design a flowchart and write an algorithm for a problem (e.g., calculating the factorial of
a number).
b. Convert the flowchart and algorithm into a Python program.
Structured Programming
a. Write a Python program using top-down and bottom-up programming methodologies to
solve a problem (e.g., calculating the sum of digits of a number).
Python Program Structure

a. Write a Python program to demonstrate the basic structure of a Python program (e.g.,
print "Hello, World!").
Python Operators
a. Write a Python program to demonstrate the use of:

i
ii.
iii.
iv.
V.
Vi.

Arithmetic operators
Relational operators
Logical operators
Assignment operators
Ternary operators
Bitwise operators.

Input and Output Statements

Write a Python program to take user input and display output (e.g., calculate the
area of a circle).

Control Statements

Write a Python program to demonstrate:
Branching (if-else)
Looping (for, while)

iv. Conditional statements (elif).
v. Example: Check if a number is prime.
Functions
i. Write a Python program to define and use functions with:
ii. Default arguments
iii. Return statements.
iv. Example: Create a function to calculate the factorial of a number.

Exception Handling

Write a Python program to handle exceptions (e.g., division by zero).

Iterations
i. Write a Python program to demonstrate:
ii. For loops
ii. While loops.
iv. Example: Print the Fibonacci series using a loop.
Recursions

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL
Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University

http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

12.

13.

14.

15.

16.

17.

18.

19.

I. Write a Python program to demonstrate recursion (e.g., calculate the factorial of a
number using recursion).
ii. Draw a stack diagram for a recursive function.
Multiple Assignments
i. Write a Python program to demonstrate multiple assignments (e.g., swap two
numbers without a temporary variable).

String Operations
I. Write a Python program to demonstrate:
ii. String traversal using a for loop
lii. String slicing
iv. String comparison
v. Finding a substring in a string.
vi. Example: Count the occurrences of a character in a string.
Factorial Calculation
Write a program to calculate the factorial of a number using both iteration and recursion.
Fibonacci Series
Write a program to generate the Fibonacci series using both iteration and recursion.
Prime Number Check
Write a program to check if a number is prime.
String Palindrome
Write a program to check if a string is a palindrome.
List Sorting
Write a program to sort a list of numbers without using built-in functions.
Matrix Operations
Write a program to perform matrix addition and multiplication.

Suggested Readings:

1. Introduction to Computation and Programming Using Python by John V. Guttag, Publisher:
MIT Press, Year of Publication: 2013 (1st Edition), 2016 (2nd Edition), 2021 (3rd Edition),
Edition: 3rd Edition (Latest)

2. Think Python: How to Think Like a Computer Scientist by Allen Downey, Publisher:
O’Reilly, Year of Publication: 2012 (1st Edition), 2015 (2nd Edition), Edition: 2nd Edition (Latest)

3. Learning Python, 5th Edition” by Mark Lutz, Publisher: O’Reilly, Year of Publication: 2013,
Edition: 5th Edition (Latest)

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

INTERNSHIP/APPRENTICESHIP (INT)

Credit-04 Marks: 50 (120 hours, 8 weeks)

Guideline for internship/apprenticeship:

The internship program will commence at the beginning of the third semester and will be evaluated
upon its completion at the end of the fourth semester.

1.

2.

o

A student may visit an industry for industry-related issues or a research institution, laboratory, or academic
institute to engage in internship under the guidance of an industry official, scientist, or academician.

A student may work at a company’s outlet or similar type of office, Professional bodies, etc. to develop
programming / process etc. under the supervision of the respective official or a faculty of his/her own
college teacher or a teacher from another college/university/industry person.

Interns may engage in advanced learning in topics beyond their course curriculum, under the guidance of
their respective mentor.

Interns may be assigned a problem to solve using any programming language.

Interns may be assigned to design a webpage for college /department/ Entrepreneur/ start-up under the
mentor’s guidance.

Interns may be allowed to work as quantitative researchers in advance topics in Computer Science and
applications from the reputed institute/ organization.

General instructions:

a)
b)

c)

Each intern must maintain a daily logbook of activities.

At the end of the internship, a completion certificate must be obtained from the mentor, supervisor, or
concerned authority.

Interns are expected to strictly adhere to the assigned tasks and deadlines.

VIDYASAGAR UNIVERSITY, PASCHIM MIDNAPORE, WEST BENGAL

Downloaded from Vidyasagar University by 14.139.211.194 on 24 Jan 2026 15:42:10 PM; Copyright (c) : Vidyasagar University
http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=227

