

# Syllabus for Course Work in Ph. D. Programme

Department of Physics Vidyasagar University Midnapore 721102

Downloaded from Vidyasagar University by 14.139.211.194 on 19 Jul 2025 10:19:58 AM; Copyright (c) : Vidyasagar University http://download.vidyasagar.ac.in/OpenLink.aspx?LINKID=125

## Syllabus for Course Work in Ph. D. Programme in Physics

| Course Code      | Marks                                         |
|------------------|-----------------------------------------------|
| Course I         | Theoretical: 40<br>Practical: 10<br>Total: 50 |
| Course II        | Theoretical: 40<br>Practical: 10<br>Total: 50 |
| Course III (PHS) | Theoretical: 50<br>Total: 50                  |
| Course IV (PHS)  | Theoretical: 50<br>Total: 50                  |
| Total            | 200                                           |

# Total Marks: 200 **Division of marks**

## Structure of the Curriculum for Ph.D. Course work in Physics

| Course Code         | Course Name                                           | Marks  |            |       | Exam Time |
|---------------------|-------------------------------------------------------|--------|------------|-------|-----------|
|                     |                                                       | Theory | Assignment | Total |           |
| Course I            | Research<br>Methodology                               | 40     | 10         | 50    | 2 hours   |
| Course II           | Computer<br>Application and<br>Statistical<br>Methods | 40     | 10         | 50    | 2 hours   |
| Course III<br>(PHS) | Physics                                               | 50     |            | 50    | 2 hours   |
| Course IV<br>(PHS)  | Special Topics<br>in Physics                          | 50     |            | 50    |           |

## **Course Contents**

# Course Code: Course I Course Name: Research Methodology Marks: Theoretical – 40 + Assignment (Practical) – 10 = 50

#### **Group A: Theoretical – 40 marks**

- 1.1 Research: definition, importance, meaning and characteristics. Steps in research.
- 1.2 Research problem: identification, selection and formulation.
- 1.3 Sampling: definition, theory, types, techniques and steps. Sample size, advantages and limitations of sampling.
- 1.4 Data: definition, sources and types. Data collection methods. Limitations and cautions. Analysis of data.
- 1.5 Review of literature and Bibliography.
- 1.6 Research report: types, contents, styles and steps in drafting. Editing the final draft and Thesis writing.

#### Group B: Assignment writing on any one (Practical) - 10 marks

- (a) Review of articles
- (b) Research proposal
- (c) Sample design
- (d) Data analysis

## **Course Code: Course II**

## **Course Name: Computer Application and Statistical Methods**

Marks: Theoretical -40 + Assignment (Practical) - 10 = 50

#### Group A: Theoretical – 20 marks

- 2.1 Operating system: latest version of WINDOWS, UNIX.
- 2.2 Database management System.
- 2.3 Office management: MS-Word, MS-Excel, MS-Power Point, and Latex.
- 2.4 Software Packages: MATHLAB, MATHEMATICA, Origin, etc.
- 2.5 Programming with C / C++ / Python

### **Group B: Theoretical – 20 marks**

- 2.6 Probability distribution. Distribution Free Approach, Test for goodness for fit for a proposed distribution. Correlation of coefficient: simple linear, multiple linear, and partial. Regression; simple, multiple and stepwise. Sampling: definition, theory, types, techniques and steps.
- 2.7 The relevance of the research from perspective of the subject. Detailed review of state of the art. Scope of the work.

#### Group C: Assignment writing on any one (Practical) - 10 marks

Power point presentation on a research topic.

# Course Code: Course III (PHS) Course Name: Physics Marks: 50

- 3.1 Introduction: Physical and chemical properties. Necessity of characterization.
  Macroscopic properties: Optical, Electrical, dielectric, magnetic, mechanical.
  Microscopic properties: Chemical structure, composition, surface characterization.
  Probing bulk and nano-structure XRD, SEM, TEM, HRTEM, Neutron scattering.
  Phase changes, crystalline and amorphous fractions DSC Thermo-gravimetric methods TGA, DTA
- 3.2 Single crystals and their growth by different techniques

Conductivity, Photo-conductivity, Hall Effect, Thermoelectric Power in Semiconductor and their measurements. Measurement of drift mobility. Surface States.

- 3.3 Transistor Models: Ebers-Moll model, Gummel-Poon model.
- 3.4 Raman, FTIR, Optical microscopy, Photoluminescence, UVVIS, Optical Absorption and band gap determination, Photocurrent generation, optical device, quantum efficiency, photo responsivity.
- 3.5 Surface Science; Vacuum Technology, Vacuum based synthesis technology, Structure and topography, STM, LEED, AFM.

# Course Code: Course IV (PHS) Course Name: Special Topics in Physics Marks: 50

- 4.1 Quantum Optics
- 4.2 IC design and simulation using PSPICE, low voltage and low power methodology of IC design.
- 4.3 Growth and characterization of semiconducting nanoparticles for different applications.
- 4.4 Optoelectronic materials for technological applications.
- 4.5 Low dimensional materials for energy and environmental applications.